
219

Parallel Differential Evolution Algorithm with Mult iple Trial Vectors to
Artificial Neural Network Training

HtetThazin Tike Thein, Khin Mo MoTun
University of Computer Studies, Yangon

htetthazintikethein@ucsy.edu.mm, khinmo2tun@gmail.com

Abstract

In this paper, parallel differential evolution
algorithm with multiple trial vectors for training
artificial neural networks (ANNs) is presented. The
proposed method is PDEA, which is a DE-ANN+
modified by adding island model. Within PDEA, an
island model is designed to cooperatively search for
the global optima in search space. By combining the
strengths of the differential evolution algorithm with
multiple trial vectors and island model, PDEA greatly
improves the optimization performance. PDEA
algorithm is used for ANN training to classify the
parity-p problem. Results obtained using proposed
algorithm has been compared to the results obtained
using other evolutionary algorithms.

Keywords: Artificial intelligence, artificial neural
network, differential evolution algorithm, multiple trial
vectors, training method, island model.

1. Introduction

Artificial Neural Networks with feed-forward
structure (ANNs) are widely used in regression,
prediction, and classification. The problem of ANN
training is formulated as the minimization of an error
function in the space of connection weights. Typical
ANN training methods e.g. back-propagation and
conjugate gradient algorithms are based on gradient
descent. Algorithms based on gradient methods can
easily get stuck in local minima. To avoid this problem,
it is possible to use the technique of a global
optimization, like for example the differential evolution
algorithm [1], [2], which is one of variations of
evolutionary algorithms [3], [4], [5]. Differential
evolution algorithm has been introduced recently (in
the year 1997), and is a heuristic algorithm for global
optimization. It advantages are as follows: a possibility
of finding the global optimum of a multi-modal
function regardless of initial values of its parameters,
quick convergence and a small number of parameters
to set up at the start of the algorithm operation [6].

The interest of the Evolutionary Computation
community in more complex problems requires the use
of advanced models of Evolutionary Algorithms (EAs),
because standard models are not powerful enough. One
family of such models are island models, in which
individuals are split into sub-populations (islands),
evolving on their own, and, from time to time
exchanging individuals by migrations. Increasing
pressure to solve real world complex problems has led
to the development of Parallel Evolutionary
Algorithms (PEAs) which exploit the intrinsically
parallel nature of EAs. An extensive review of parallel
evolutionary models, parallel implementations, and
pressing theoretical issues can be found in [9].
Parallelization of an evolutionary algorithm can be
done at any of the following levels: objective function
evaluation level (master-slave) model, population level
(island model or migration model) and elements level
(cellular level). The first two lead to coarse grained
parallelization while the cellular model leads to fine
grained parallelization. In this paper, PDEA algorithm
is used for ANN training to classify the parity-p
problem. The results from the obtained algorithm have
beencompared with results from the following
algorithms: an evolutionary algorithm, a DE algorithm
with multiple trial vectors, a DE algorithm without
multiple trial vectors,gradient training methods, such as
error back-propagation, andtheLevenberg-Marquardt
method.

2. Related Work

Since 1997, the DE algorithm has been modified
to increase its effectiveness. The introduction of
adaptive selection of control parameters in the DE
algorithm means that better results can be obtained in
the same period of time, and the algorithm is less
sensitive to dimensionality changes in the task being
optimized [7]. Also, in 2007, the concept ofmultiple
trial vectors [8] was introduced to the DE algorithm.
This approach is based on the generation of a higher
number of mutated individuals around the existing
individuals (solutions). Because of this, the probability
of generating a better solution is increased [8].Many

220

applications have shown that parallel evolutionary
algorithms can speed up computation and find better
solutions, compared to a sequential evolutionary
algorithm. Over the past few years, considerable
amount of work has been done on parallelization using
island model (IM) strategy [10], [11], [12], [13], [14].

In this paper, parallel differential evolution
algorithm with multiple trial vectors is proposed.
PDEA is designed for improving the optimization
performance of the component algorithm. The
proposed method is a modified DE-ANNT+ method
[15] with the island model added. DE-ANNT+ [15]
with the multiple trial vectors techniques is also used
for ANN training to classify the party-p problem.The
results obtained from using the proposed method have
been compared with the results obtained from using the
error back-propagation algorithm [16], [17], the
Evolutionary Algorithm-NeuralNetwork Training (EA-
NNT) method [18], the Levenberg-Marquardt (LM)
algorithm [19], the DE-ANNT method [20] and the
DE-ANNT+ method [15].This paper is an extension of
[15], in which an ANN training algorithm based on
DE+ algorithm was presented.

3. Background

3.1. Differential Evolution Algorithm

The differential evolution algorithm has been
proposed by Price and Stron [1]. Its pseudo-code form
is as follows:
Create an initial population consisting of PopSize
individuals

While (termination criterion is not satisfied)

Do Begin

 For each i th individual in the population

 Begin

 Randomly generate three integer numbers:

 r1,r2,r3� [1;PopSize], where r1≠r2≠r3≠i

 For each j th gene in i th individual (j � [1; n])

 Begin

)(,3,2,1, jrjrjrji xxFxV −⋅+=

 Randomly generate one real number
randj�[0;1)

 If randj<CR then ui,j:= vi,j

 Else ui,j:= xi,j

 End;

 If individual uiis better thanindividual
xithenreplaceindividualxiby child ui individual

 End;

End;

The individual xi is better than individual ui
when the solution represented by it has a lower value
of the objective function (regarding minimization
tasks) or a higher value (regarding maximization tasks)
than the solution stored in individual ui. The algorithm
shown in the pseudo-code optimizes the problem with
n decision variables. The F parameter scales the values
added to the particular decision variables, and the CR
parameter represents the crossover rate. The parameters
F ∈ [0; 2) and CR ∈ [0; 1) are determined by the user,
and xi,j is the value of the j th decision variable stored in
the i th individual in the population. This algorithm is a
heuristic algorithm for global optimization and is
operated by using decision variables in a real number
form. The individuals occurring in this algorithm are
represented by real number strings. Its searching space
must be continuous [1], [6]. By computing the
difference between two individuals chosen randomly
from the population, the DE algorithm determines a
function gradient within a given area (not at a single
point). Therefore, the DE algorithm prevents
thesolution sticking at a local extreme of the optimized
function [1], [6]. Another important property of this
algorithm is a local limitation of the selection operator
to only two individuals (parent (xi) and child (ui)), and,
owing to this property, the selection operator is more
effective and faster [6]. Also, to accelerate the
convergence of the algorithm, it is assumed that the
index r1 (occurring in the algorithm pseudo-code)
points to the best individual in the population.

3.2.Island Model Strategy

Independent runs suffer from obvious
drawbacks: once a run reaches a situation where its
population has become stuck in a difficult local
optimum, it will most likely remain stuck forever. This
is unfortunate since other runs might reach more
promising regions of the search space at the same time.
It makes more sense to establish some form of
communication between the different runs to
coordinate search, so that runs that have reached low-
quality solutions can join in on the search in more
promising regions.

In island models, also called distributed EAs,
coarse-grained model, or multi-deme model, the

221

population of each run is regarded as an island. One
often speaks of islands as subpopulations that together
form the population of the whole island model. Island
evolves independently as in the independent run model,
for most of the time. But periodically solutions are
exchanged between islands in a process called
migration.

The idea is to have a migration topology, a
directed graph with islands as its nodes and directed
edges connecting two islands. At certain points of time
selected individuals from each island are sent off to
neighboring islands, i.e., islands that can be reached by
a directed edge in the topology. These individuals are
called migrants and they are included in the target
island after a further selection process. This way,
islands can communicate and compete with one
another. Islands that got stuck in low-fitness regions of
the search space can be taken over by individuals from
more successful islands. This helps to coordinate
search, focus on themost promising regions of the
search space, and use the available resources
effectively.

In the island model approach, each island
executes a standard sequential evolutionary algorithm.
The communication between sub-population is assured
by a migration process. Some randomly selected
individuals (migration size) migrate from one island to
another after every certain number of generations
(migration interval) depending upon a communication
topology (migration topology). The two basic and most
sensitive parameters of island model strategy are:
migration size, which indicates the number of
individuals migrating and controls the quantitative
aspect of migration; and migration interval denoting
the frequency of migration.

4.Proposed PDEA Method

The proposed PDEA method is based on the
previously elaborated DE-ANNT+ method [15] and
operates according to the following steps:

In the first step, a population of individuals is
randomly created. The number of individuals in the
population is stored in parameter PopSize. Each
individual xi consists of k genes (where k represents the
number of weights in the trained ANN). In Fig 1. (a), a
part of an ANN with neurons from n to m is shown.
Additionally, in Fig 1(b), the coding scheme for
weights in an individual xi connected to neurons from
Fig 1. (a) is shown.

(a)

(b)

Figure 1.Part of (a) ANN, corresponding to its (b)
chromosome containing the weight values; wi,0

represent bias weights [15].

Each j th (j ∈ [1,k]) gene of individual xi can have
values from a determined range of variability (closed
double-sided) from minj to maxj. In the proposed
method, the values of minj = −1 and maxj =1 are
assumed.

In the second step, the NT (number of trial
vectors) mutated individuals (trial vectors) Vi,m(m ∈
[1,NT]) are created for each individual xi in the
population, according to the formula

)(321, rrrmi xxFxV −+= (1)

where F∈[0,2), and r1,r2,r3,i ∈ [1,PopSize] fulfill the
constraint
 r1 ≠ r2 ≠ r3 ≠ i (2)

Indexes r2 and r3 point to individuals randomly
chosen from the population. Index r1 points to the best
individual in the population, which has the lowest
value of the training error function, ERR (.). This
function is described as follows:

∑

=
−=

T

i
ii AnswerCorrectERR

1

2)(
2

1 (3)

wherei is the actual number of training vector, T is the
number of all training vectors; Correcti is the required
correct answer for the i th training vector, and Answeriis
the answer generated by the neural network for the i th
training vector applied to its input. The DE-ANNT+
method minimizes the value of the objective function
ERR (.). From the created set of mutated vectors Vi,m,
only one vector Vi,m (individual),having the lowest
value of the objective function ERR (.), is chosen for
each individual xi, and it is assigned as vector vi.

In the third step, all individuals xi are crossed

over with their mutated individuals vi. As a result of

n

Wn,1 Wn,x

Wn,0

Wn+1,

n+1

Wn+1,1 Wn+1,x

Wm,0

m

Wm,1 Wm,x

Wn+1,x Wm,0 Wm,1 Wn,x Wn+1,0 Wn+1,1 Wn,0 Wn,1 Wm,x

n n+1 m

222

this crossover operation, an individual ui is created.
The crossover operates as follows: for chosen
individual xi = (xi,1,xi,2,xi,3,...,xi,j) and individual vi
=(vi,1,vi,2,vi,3,...,vi,j); for each gene j∈[1;k] of individual
xi, randomly generate a number randj from the range
[0; 1), and use the following rule:

If randj< CR then ui,j =vi,j
Else ui,j =xi,j

where CR ∈ [0; 1).

 In this paper, an adaptive selection of control
parameter values F and CR is introduced (similarly as
in [7]) according to the formulas

 1−

=
i

i

TheBest

TheBest
A

 (4)

)(2 randomAF = (5)

)(randomACR= (6)

Where random—the random number with a uniform
distribution in the range [0; 1); TheBesti—the value of
the objective function for the best solution inith
generation; TheBesti−1—the value of the objective
function for the best solution in the i−1 th generation.

From (5) and (6), we can see that, in the case of
a stagnation (lack of changes of the best solution), the
F parameter takes random values from the range [0; 2),
and the CR parameter takes random values from the
range [0; 1). In such a case, the searching of the
solution space has a more global character, and the DE
algorithm may “get out” more easily from the local
extreme that is causing its stagnation. However, in the
case where the results obtained by the DE algorithm
are improving in subsequent generations, then the F
parameter accepts random values from the range [0;
2·A), and the CR parameter accepts random values
from the range [0; A). Obviously, the value of
coefficient A is lower when a greater improvement in
the results obtained has occurred between two
successive generations. In this case, the searching of
the solution space has a more local nature and can lead
to “fine-tuning” of the best solution to the optimal
value.

In the fourth step, a selection of individuals for
the new population is performed according to the
following rule:

If ERR (ui) < ERR (xi) then
Replace xi by ui in the new population

Else leave xi in the new population

In the fifth step, it is checked whether the value
of ERR (xr1) <e, or if the algorithm has reached the
prescribed number of generations (indexr1points to the
best individual with the lowest value of the objective
function, ERR, in the population). If this is the case,
the result stored in individual xr1 is returned and the
algorithm goes to next step. Otherwise, the algorithm
jumps to the second step.

In the sixth step, select individuals from parallel
differential evolution algorithm according to migration
policy.

In the seventh step, migrate and replace
individuals according to migration topology.

In the eighth step, stop if the stop criterion is
satisfied; otherwise, go to second step. In the proposed
system, number of iterations and limited error are used
as criteria.

5. The Structure of Assumed Artificial
Neural Network and Neuron Model

The proposed PDEA method has been tested by
training of feed-forward flat artificial neural network.
Fig 2 shows the typical neural network. (AF –
activation function: WS – weighting sum).

Figure 2.Structure of artificial neural network

The classic model of a neuron including the
adder of input values multiplied by the corresponding
values of weights – i.e., the weighted sum, has been
taken as a model of an artificial neuron. The weighted
sum WSj of the j th neuron is defined as follows:

 ∑
=

=
p

i
iij UwWSj

0
,

 (7)

Un+m

U0

U0 U0

AF

WS

Un

AF

WS

U2

Un+m+1

AF

WS

Un+1

U1

AF

WS
U0

Un+2

223

where p – the number of inputs in the jth neuron; wj,i–
the value of weight representing the connection
between the j th neuron and its input; Ui– the value of
the i th input of the j th neuron.

A bipolar sigmoidal activation function has been
assumed in the form

)exp(1

)exp(1
)(

j

j
jj WS

WS
WSfU

λ
λ

−+
−−

== (8)

whereUj – the value of the j th neuron output; λ - the
nonlinearity coefficient of the activation function

(assumed λ =1).

6.Description of Experiments

The proposed parallel differential evolution
algorithm with multiple trial vectors (PDEA) to
classify the parity-p problem. There were five islands
used to realize PDEA. The differential evolution
algorithm has been adapted for solving and assigned to
every island in PDEA. Island model used different
subpopulation with each own island. Each island
operates its own execution as like in DE algorithm.
Each island initializes the population at the start of the
algorithm or replace the subpopulation migrates from
other neighbor. Mutation, crossover and selection are
performed on the individual chromosome. If the
migration interval is not fired, the next iteration begin
within island, otherwise, a portion of its own
population and neighbor is selected for migration. If
the migration occurs, island sends sub-population to
neighbor island. Neighbor island replaces the sub-
population send by its neighbor and replace with its
portion of population and algorithm continue. To
classify the parity-p problem (p ∈ [3; 6]), ANNs having
structures shown in Fig. 2, were trained using the
proposed method and other methods for comparison.
The parity-p problem is described as follows: if p
presents the number of inputs, and each input can
accept values “1” or “-1”, then, in the output of the
network, “1” occurs if and only if the number of “1” in
the inputs of the ANN is odd. Otherwise “-1” occurs in
the output of the ANN.

The example training set was equal to the testing
set and contained 2p vectors. The following values of
parameters were assumed: PopSize = 100 and e =
0.0001. Comparative results obtained using the
algorithms DE-ANNT+ [15], DE-ANNT [20], EA-

NNT [18], the EBP algorithm [16], [17], and the LM
algorithm [19], were taken from [15].

In the experiments we used identical islands, i.e,
islands with same parameters. We used a ring topology
for our experiments. We used five islands because no
significant change was noticed in the nature of the
algorithm with a change in the number of islands. The
policy of migration used was best-random policy in
which best string from an island replaces any other
random string of another island based on the ring
topology. Each island executed the standard DE
algorithm with the total population size of 20
individuals per island. The PDEA algorithm presented
in this paper was stopped when the training error value
of the ANN was lower than e =0.0001 or when
operation time exceeded the maximal computation time
for each parity-p problem.

In table 1-3, the symbols used are as follows:
NT-the number of trial vectors; ME-the training
method chosen: NI-the number of iterations; CC-the
correct classification (%); FC-the false classification
(%). The values representing the correct CC and false
FC classifications were computed as follows:

 %100)
2

(1
p

M

i iC
CC

∑ == (9)

 CCFC −= %100 (10)

where CC—the correct classification (%); M—the
number of testing vectors (M ∈ [1,2p]); p—the number
of inputs in the ANN; Ci—the coefficient representing
the correctness of the classification of the ith training
vector which is determined as follows:

 �� � �1, 	
��
��� � � ��� �� � 1

1, 	
��
��� � �� ��� �� � �1

0, ��
��	���

� (11)

where Uout = f(Sout)—the value of the output signal of
the ANN after the application of the i th testing vector to

its input; ϕ —the threshold of the training correctness;
Bi—the value expected for the output of the ANN.
Artificial neural networks were trained using the
proposed PDEA method for different values of NT ∈

[1; 10] and parameter ϕ =0.99.

224

Table 1.Average Values for Different Values of NT

and ϕ = 0.99

 Problem Parity – 3 Problem Parity - 4
NT NI CC (%) NI CC(%)
1 22.4 98.75 374 76.875
2 22.8 98.75 233.6 83.125
3 22.3 98.75 186.6 83.750
4 22.4 100 162.3 85
5 29.3 93.75 126.1 85
6 28.6 97.50 129.4 78.125
7 20.2 98.75 116.2 80
8 17.9 98.75 100.9 82.5
9 17.4 98.75 91.5 81.25
10 9.0 98.75 82.4 82.4

 Problem Parity - 5 Problem Parity - 6
NT NI CC (%) NI CC(%)
1 461.7 86.5625 1433.6 80.625
2 203 89.0625 974.8 75.15625
3 233.1 84.375 772.8 80.9375
4 178.6 78.4375 631.9 80.9375
5 169.7 73.125 569.3 75.78125
6 147.7 82.625 493.7 72.1875
7 144.5 79.375 442.7 60.15625
8 123.4 80.3125 401.7 49.53125
9 110.8 83.125 368 50.15625
10 103.6 77.1875 336.1 70.15625

In Table 1, the average values of the results were

taken from [15]. It can be seen from Table 1 that the
best results (the highest values of CC) are obtained for
values NT ∈ [1; 4]. Therefore, during the next
experiment, the value NT equal to 3 was assumed. The
PDEA algorithm was executed tenfold, and the average

values of the results obtained for ϕ =0.90 andϕ =0.99

are presented in Table 2 (ϕ =0.90) and in Table 3 (ϕ
=0.99). The comparative results in both tables are taken

from [15]. The ϕ values were chosen experimentally
according to the author’s previous experience.
Table 2.Average Values of Results Obtained After
Tenfold Repetition of PDEA Algorithm (ϕ = 0.90)

Problem Parity-3 Problem Parity-4

ME NI CC (%) FC (%) NI CC (%) FC (%)

PDEA 15 100 0 30 98.685 1.315

DE+ 27.3 100 0 200.3 88.125 11.875

DE 24.9 100 0 442.4 87.5 12.5

EA 56.4 81.25 18.75 154.5 72.5 27.5

EBP 300 36.25 63.75 800 69.375 30.625

LM 19 100 0 49.9 97.5 2.5

Problem Parity-5 Problem Parity-6

ME NI CC (%) FC (%) NI CC (%) FC (%)

PDEA 100 97.489 2.511 500 98.9035 1.0965

DE+ 211.9 91.5625 8.4375 737.9 93.28125 6.71875

DE 420.3 96.5625 3.4375 2058.4 89.84375
10.1562

5

EA 351 67.8125 32.1875 1505.4 78.75 21.25

EBP 2250 69.6875 30.3125 10800 85.78125
14.2187

5

LM 161.7 96.5625 3.4375 1044.2 97.8125 2.1875

Table 3. Average Values of Results Obtained After
Tenfold Repetition of PDEA Algorithm (ϕ = 0.99)

Problem Parity-3 Problem Parity-4

ME NI CC (%) FC (%) NI CC (%)
FC
(%)

PDEA 20 100 0 31 90.556 9.444

DE+ 33.7 98.75 1.25 198.4 83.75 16.25

DE 25.3 96.25 3.75 458.4 81.25 18.75

EA 55.2 65 35 153.3 60.625 39.375

EBP 300 6.25 93.75 800 2.5 97.5

LM 21.7 71.25 28.75 33.9 81.875 18.125

Problem Parity-5 Problem Parity-6

ME NI CC (%) FC (%) NI CC (%)
FC
(%)

PDEA 49 91.671 8.329 103 93.474 6.526

DE+ 234.6 86.875 13.125 773.4 80.9375
19.062

5

DE 640.4 86.875 13.125 2025.3 83.59375
16.406

25

EA 350.4 60.3125 39.6875 1498.9 65 35

EBP 2250 17.1875 82.8125 10800 41.09375
58.906

25

LM 57.7 84.375 15.625 154.6 85.9375
14.062

5

From Tables 2 and 3, it can be seen that, for the

threshold of training correctness values ϕ =0.90 and ϕ
=0.99, the application of the proposed PDEA method
caused an increasein the correct classification of data
as compared to the DE-ANNT+ method. For all cases,
better results (having a higher percentage of correctly
classified data) were obtained using the proposed
method than by using the DE-ANNT+ method. Also,
results obtained using the PDEA algorithm are better
than the results obtained by using DE-ANNT, EBP,
EA, and LM algorithms.

Also, it can be seen from Tables 2 and 3 that the
number of iterations (NI) of EBP increases as the
maximal time increases, but the NI of LM does not.
This is caused by the fact that, for the EBP method, the

225

ANN training error value was not lower than e=0.0001
after the maximal time. Therefore, in all cases, the EBP
method was stopped after the same number of
iterations, but with the LM algorithm, the computations
were often stopped before the maximal time was
reached.

7. Conclusion

This paper presents parallel differential
evolution algorithm with multiple trial vectors (PDEA)
for artificial neural network training to classify the
parity-p problem. Based on the results shown in Tables
2 and 3, it can be seen that training of artificial neural
networks by using the PDEA algorithm increases the
efficiency of the data classification in the same period
when compared with the EA, EBP, DE-ANNT, DE-
ANNT+, or LM algorithms. Therefore, one can say,
that using proposed PDEA algorithm better trained
artificial neural network can be obtained at the
presumed time, than using EA, EBP, DE-ANNT, DE-
ANNT+, or LM algorithms (more data are correctly

classified for increasing values of parameter ϕ).
Additionally, an introduction of parallel differential
evolution algorithm is presented in this paper. Also, it
is worth saying that the proposed PDEA algorithm can
be used in many industrial electronics applications in
which the use of artificial neural network is needed.

References

[1] R. Storn, and K. Price, “Differential Evolution-A Simple
and Efficient Heuristic for Global Optimization over
Continuous Spaces,” Journal of Global Optimization,
Vol. 11, pp. 341-359, 1997.

[2] K. Price, “An Introduction to Differential Evoluiton,” in
David Corne, Marco Dorigo, and Fred Glover, editors,
New Ideas in Optimization, pp. 79-108, McGraw-Hill,
London, UK, 1999.

[3] D. Goldberg, Genetic Algorithm in Search, Optimization,
and Machine Learning. Addison-Wesley Professional,
1989.

[4] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs. Springer, 1998.

[5] J. Arabas, Lectures on Evolutinary Algorithms. WNT,
Warsaw, 2001, (in Pollish).

[6] R. L. Becerra and C. A. CoelloCoello, “Cultured
differential evolutionfor constrained
optimization,”Comput. Methods Appl. Mech. Eng., vol.
195, no. 33–36, pp. 4303–4322, Jul. 1, 2006.

[7] A. Slowik and M. Bialko, “Adaptive selection of control
parameters in differential evolution algorithms,”
inComputational Intelligence: Methods and
Applications, L. Zadeh, L. Rutkowski, R. Tadeusiewicz,
and J. Zurada, Eds. Warsaw, Poland: EXIT, pp. 244–
253, 2008.

[8] E. Mezura-Montes, C. A. CoelloCoello, J. Velázquez-
Reyes, and L. Munoz-Dávila, “Multiple trial vectors in
differential evolution for engineering design,”Eng.
Optim., vol. 39, no. 5, pp. 567–589, Jul. 2007.

[9] E.Alba and M. Tomassini, “Parallelism and
Evolutionary Algorithms,” IEEE Trainsactions on
Evolutionary Computation, vol. 6, no. 3, pp 373-388,
Aug. 1998.

[10] Z. Skolicki and K. De Jong, “Improving evolutionary
algorithms with multi-representation island models,”
inParallel Problem Solvingfrom Nature - PPSN VIII 8th
International Conference, Springer-Verlag, 2004.

[11] D. Whitley, S. Rana and R. B. Heckendorn, “The island
model genetic Algorithm: On separability, population
size and convergence,”Jnl.ofComputingand Information
Technology, vol. 7, no. 1, pp. 33–47, 1999.

[12] E. Cantu-Paz, “Migration policies, selection pressure,
and parallel evolutionary algorithms,”Jnl.ofHeuristics,
vol. 7, no. 4, pp. 311–334, 2001.

[13] R. Storn, “On the usage of differential evolution for
function optimization,” in Proc. Of the 1996 Biennial
Conference of the North American Fuzzy Information
processing society – NAFIPS, Edited by: M. H. Smith,
M. A. Lee, J. Keller nad J. Yen, June 19-22, Berkeley,
CA, USA, IEEE Press, New York, pp 519-523.

[14] L. Singh and S. Kumar, “Parallel Evolutionary
Asymmetric Subsethood Product Fuzzy-Neural
Inference System: An Island Model Approach,”
inProceedingsof the InternationalConference on
Computing: Theoryand Applications(ICCTA-2007), pp.
282-286, 2007.

[15] A. Slowik, “Application of an Adaptive Differential
Evolution Algorithm with Multiple Trial Vectors to
Artificial Neural Network Training,” IEEE,
Transactions on Industrial Electronics, Vol. 58. No. 8,
August, 2011.

[16] L. Fu, Neural Networks in Computer Intelligence.New
York: McGraw- ill, 1994.

[17] T. Masters,Practical Neural Network Recipes in C++.
New York: Academic, 1993.

[18] A. Slowik and M. Bialko, “Application of evolutionary
algorithm to training of feedforward flat artificial neural
networks,” (in (in Polish)), inProc.KOWBAN, pp. 35–
40, 2007.

[19] A. Osowski, (in Polish), Neural Networks in
Algorithmic Use. Warsaw, Poland: WNT, 1996.

[20] A. Slowik and M. Bialko, “Training of artificial neural
networks using differential evolution algorithm,” inProc.
IEEE Conf. Human Syst. Interaction, Cracow, Poland,
pp. 60–65, May 25–27, 2008.

[21] Z. Skolicki and K. De Jong, “The influence of migration
sizes and intervals on island models,” in Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO-2005), ACM Press, 2001.

