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Abstract 

In this paper, parallel differential evolution 
algorithm with multiple trial vectors for training 
artificial neural networks (ANNs) is presented. The 
proposed method is PDEA, which is a DE-ANN+ 
modified by adding island model. Within PDEA, an 
island model is designed to cooperatively search for 
the global optima in search space. By combining the 
strengths of the differential evolution algorithm with 
multiple trial vectors and island model, PDEA greatly 
improves the optimization performance. PDEA 
algorithm is used for ANN training to classify the 
parity-p problem. Results obtained using proposed 
algorithm has been compared to the results obtained 
using other evolutionary algorithms. 
 
Keywords: Artificial intelligence, artificial neural 
network, differential evolution algorithm, multiple trial 
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1. Introduction  

Artificial Neural Networks with feed-forward 
structure (ANNs) are widely used in regression, 
prediction, and classification. The problem of ANN 
training is formulated as the minimization of an error 
function in the space of connection weights. Typical 
ANN training methods e.g. back-propagation and 
conjugate gradient algorithms are based on gradient 
descent. Algorithms based on gradient methods can 
easily get stuck in local minima. To avoid this problem, 
it is possible to use the technique of a global 
optimization, like for example the differential evolution 
algorithm [1], [2], which is one of variations of 
evolutionary algorithms [3], [4], [5]. Differential 
evolution algorithm has been introduced recently (in 
the year 1997), and is a heuristic algorithm for global 
optimization. It advantages are as follows: a possibility 
of finding the global optimum of a multi-modal 
function regardless of initial values of its parameters, 
quick convergence and a small number of parameters 
to set up at the start of the algorithm operation [6]. 

The interest of the Evolutionary Computation 
community in more complex problems requires the use 
of advanced models of Evolutionary Algorithms (EAs), 
because standard models are not powerful enough. One 
family of such models are island models, in which 
individuals are split into sub-populations (islands), 
evolving on their own, and, from time to time 
exchanging individuals by migrations. Increasing 
pressure to solve real world complex problems has led 
to the development of Parallel Evolutionary 
Algorithms (PEAs) which exploit the intrinsically 
parallel nature of EAs. An extensive review of parallel 
evolutionary models, parallel implementations, and 
pressing theoretical issues can be found in [9]. 
Parallelization of an evolutionary algorithm can be 
done at any of the following levels: objective function 
evaluation level (master-slave) model, population level 
(island model or migration model) and elements level 
(cellular level). The first two lead to coarse grained 
parallelization while the cellular model leads to fine 
grained parallelization. In this paper, PDEA algorithm 
is used for ANN training to classify the parity-p 
problem. The results from the obtained algorithm have 
beencompared with results from the following 
algorithms: an evolutionary algorithm, a DE algorithm 
with multiple trial vectors, a DE algorithm without 
multiple trial vectors,gradient training methods, such as 
error back-propagation, andtheLevenberg-Marquardt 
method. 

2. Related Work 

Since 1997, the DE algorithm has been modified 
to increase its effectiveness. The introduction of 
adaptive selection of control parameters in the DE 
algorithm means that better results can be obtained in 
the same period of time, and the algorithm is less 
sensitive to dimensionality changes in the task being 
optimized [7]. Also, in 2007, the concept ofmultiple 
trial vectors [8] was introduced to the DE algorithm. 
This approach is based on the generation of a higher 
number of mutated individuals around the existing 
individuals (solutions). Because of this, the probability 
of generating a better solution is increased [8].Many 
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applications have shown that parallel evolutionary 
algorithms can speed up computation and find better 
solutions, compared to a sequential evolutionary 
algorithm. Over the past few years, considerable 
amount of work has been done on parallelization using 
island model (IM) strategy [10], [11], [12], [13], [14]. 

In this paper, parallel differential evolution 
algorithm with multiple trial vectors is proposed. 
PDEA is designed for improving the optimization 
performance of the component algorithm. The 
proposed method is a modified DE-ANNT+ method 
[15] with the island model added. DE-ANNT+ [15] 
with the multiple trial vectors techniques is also used 
for ANN training to classify the party-p problem.The 
results obtained from using the proposed method have 
been compared with the results obtained from using the 
error back-propagation algorithm [16], [17], the 
Evolutionary Algorithm-NeuralNetwork Training (EA-
NNT) method [18], the Levenberg-Marquardt (LM) 
algorithm [19], the DE-ANNT method [20] and the 
DE-ANNT+ method [15].This paper is an extension of 
[15], in which an ANN training algorithm based on 
DE+ algorithm was presented. 

3. Background 

3.1. Differential Evolution Algorithm  

The differential evolution algorithm has been 
proposed by Price and Stron [1]. Its pseudo-code form 
is as follows: 
Create an initial population consisting of PopSize 
individuals 

While (termination criterion is not satisfied) 

Do Begin 

 For each i th individual in the population 

 Begin 

  Randomly generate three integer numbers: 

 r1,r2,r3� [1;PopSize], where r1≠r2≠r3≠i 

 For each j th gene in i th individual (j � [1; n]) 

 Begin 

   )( ,3,2,1, jrjrjrji xxFxV −⋅+=  

   Randomly generate one real number 
randj�[0;1) 

   If randj<CR then ui,j:= vi,j 

   Else ui,j:= xi,j 

   End; 

   If individual uiis better thanindividual 
xithenreplaceindividualxiby child ui individual 

  End; 

End; 

The individual xi is better than individual ui 
when the solution represented by it has a lower value 
of the objective function (regarding minimization 
tasks) or a higher value (regarding maximization tasks) 
than the solution stored in individual ui. The algorithm 
shown in the pseudo-code optimizes the problem with 
n decision variables. The F parameter scales the values 
added to the particular decision variables, and the CR 
parameter represents the crossover rate. The parameters 
F ∈ [0; 2) and CR ∈ [0; 1) are determined by the user, 
and xi,j is the value of the j th decision variable stored in 
the i th individual in the population. This algorithm is a 
heuristic algorithm for global optimization and is 
operated by using decision variables in a real number 
form. The individuals occurring in this algorithm are 
represented by real number strings. Its searching space 
must be continuous [1], [6]. By computing the 
difference between two individuals chosen randomly 
from the population, the DE algorithm determines a 
function gradient within a given area (not at a single 
point). Therefore, the DE algorithm prevents 
thesolution sticking at a local extreme of the optimized 
function [1], [6]. Another important property of this 
algorithm is a local limitation of the selection operator 
to only two individuals (parent (xi) and child (ui)), and, 
owing to this property, the selection operator is more 
effective and faster [6]. Also, to accelerate the 
convergence of the algorithm, it is assumed that the 
index r1 (occurring in the algorithm pseudo-code) 
points to the best individual in the population. 

3.2.Island Model Strategy 

Independent runs suffer from obvious 
drawbacks: once a run reaches a situation where its 
population has become stuck in a difficult local 
optimum, it will most likely remain stuck forever. This 
is unfortunate since other runs might reach more 
promising regions of the search space at the same time. 
It makes more sense to establish some form of 
communication between the different runs to 
coordinate search, so that runs that have reached low-
quality solutions can join in on the search in more 
promising regions. 

In island models, also called distributed EAs, 
coarse-grained model, or multi-deme model, the 
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population of each run is regarded as an island. One 
often speaks of islands as subpopulations that together 
form the population of the whole island model. Island 
evolves independently as in the independent run model, 
for most of the time. But periodically solutions are 
exchanged between islands in a process called 
migration. 

The idea is to have a migration topology, a 
directed graph with islands as its nodes and directed 
edges connecting two islands. At certain points of time 
selected individuals from each island are sent off to 
neighboring islands, i.e., islands that can be reached by 
a directed edge in the topology. These individuals are 
called migrants and they are included in the target 
island after a further selection process. This way, 
islands can communicate and compete with one 
another. Islands that got stuck in low-fitness regions of 
the search space can be taken over by individuals from 
more successful islands. This helps to coordinate 
search, focus on themost promising regions of the 
search space, and use the available resources 
effectively. 

In the island model approach, each island 
executes a standard sequential evolutionary algorithm. 
The communication between sub-population is assured 
by a migration process. Some randomly selected 
individuals (migration size) migrate from one island to 
another after every certain number of generations 
(migration interval) depending upon a communication 
topology (migration topology). The two basic and most 
sensitive parameters of island model strategy are: 
migration size, which indicates the number of 
individuals migrating and controls the quantitative 
aspect of migration; and migration interval denoting 
the frequency of migration. 

4.Proposed PDEA Method 

The proposed PDEA method is based on the 
previously elaborated DE-ANNT+ method [15] and 
operates according to the following steps: 

In the first step, a population of individuals is 
randomly created. The number of individuals in the 
population is stored in parameter PopSize. Each 
individual xi consists of k genes (where k represents the 
number of weights in the trained ANN). In Fig 1. (a), a 
part of an ANN with neurons from n to m is shown. 
Additionally, in Fig 1(b), the coding scheme for 
weights in an individual xi connected to neurons from 
Fig 1. (a) is shown. 
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Figure 1.Part of (a) ANN, corresponding to its (b) 
chromosome containing the weight values; wi,0 

represent bias weights [15]. 
 

Each j th (j ∈ [1,k]) gene of individual xi can have 
values from a determined range of variability (closed 
double-sided) from minj to maxj. In the proposed 
method, the values of minj = −1 and maxj =1 are 
assumed. 

In the second step, the NT (number of trial 
vectors) mutated individuals (trial vectors) Vi,m(m ∈ 
[1,NT]) are created for each individual xi in the 
population, according to the formula 

   
)( 321, rrrmi xxFxV −+= (1) 

where F∈[0,2), and r1,r2,r3,i ∈ [1,PopSize] fulfill the 
constraint 
   r1 ≠ r2 ≠ r3 ≠ i  (2) 

Indexes r2 and r3 point to individuals randomly 
chosen from the population. Index r1 points to the best 
individual in the population, which has the lowest 
value of the training error function, ERR (.). This 
function is described as follows: 

  
∑

=
−=

T

i
ii AnswerCorrectERR

1

2)(
2

1  (3) 

wherei is the actual number of training vector, T is the 
number of all training vectors; Correcti is the required 
correct answer for the i th training vector, and Answeriis 
the answer generated by the neural network for the i th 
training vector applied to its input. The DE-ANNT+ 
method minimizes the value of the objective function 
ERR (.). From the created set of mutated vectors Vi,m, 
only one vector Vi,m (individual),having the lowest 
value of the objective function ERR (.), is chosen for 
each individual xi, and it is assigned as vector vi. 

 
In the third step, all individuals xi are crossed 

over with their mutated individuals vi. As a result of 
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this crossover operation, an individual ui is created. 
The crossover operates as follows: for chosen 
individual xi = (xi,1,xi,2,xi,3,...,xi,j) and individual vi 
=(vi,1,vi,2,vi,3,...,vi,j); for each gene j∈[1;k] of individual 
xi, randomly generate a number randj from the range 
[0; 1), and use the following rule: 
 

If randj< CR then ui,j =vi,j 
Else ui,j =xi,j 

 
where CR ∈ [0; 1). 

 In this paper, an adaptive selection of control 
parameter values F and CR is introduced (similarly as 
in [7]) according to the formulas 
 

   1−

=
i

i

TheBest

TheBest
A

  (4) 
    

   )(2 randomAF =  (5) 

 
  )(randomACR=  (6) 

 
Where random—the random number with a uniform 
distribution in the range [0; 1); TheBesti—the value of 
the objective function for the best solution inith 
generation; TheBesti−1—the value of the objective 
function for the best solution in the i−1 th generation. 

From (5) and (6), we can see that, in the case of 
a stagnation (lack of changes of the best solution), the 
F parameter takes random values from the range [0; 2), 
and the CR parameter takes random values from the 
range [0; 1). In such a case, the searching of the 
solution space has a more global character, and the DE 
algorithm may “get out” more easily from the local 
extreme that is causing its stagnation. However, in the 
case where the results obtained by the DE algorithm 
are improving in subsequent generations, then the F 
parameter accepts random values from the range [0; 
2·A), and the CR parameter accepts random values 
from the range [0; A). Obviously, the value of 
coefficient A is lower when a greater improvement in 
the results obtained has occurred between two 
successive generations. In this case, the searching of 
the solution space has a more local nature and can lead 
to “fine-tuning” of the best solution to the optimal 
value. 

In the fourth step, a selection of individuals for 
the new population is performed according to the 
following rule: 

If ERR (ui) < ERR (xi) then 
Replace xi by ui in the new population 

Else leave xi in the new population 

In the fifth step, it is checked whether the value 
of ERR (xr1) <e, or if the algorithm has reached the 
prescribed number of generations (indexr1points to the 
best individual with the lowest value of the objective 
function, ERR, in the population). If this is the case, 
the result stored in individual xr1 is returned and the 
algorithm goes to next step. Otherwise, the algorithm 
jumps to the second step. 

In the sixth step, select individuals from parallel 
differential evolution algorithm according to migration 
policy. 

In the seventh step, migrate and replace 
individuals according to migration topology. 

In the eighth step, stop if the stop criterion is 
satisfied; otherwise, go to second step. In the proposed 
system, number of iterations and limited error are used 
as criteria. 
 

5. The Structure of Assumed Artificial 
Neural Network and Neuron Model 

The proposed PDEA method has been tested by 
training of feed-forward flat artificial neural network. 
Fig 2 shows the typical neural network. (AF – 
activation function: WS – weighting sum). 

 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.Structure of artificial neural network 
 
 

The classic model of a neuron including the 
adder of input values multiplied by the corresponding 
values of weights – i.e., the weighted sum, has been 
taken as a model of an artificial neuron. The weighted 
sum WSj of the j th neuron is defined as follows: 
 

  ∑
=

=
p

i
iij UwWSj

0
,

  (7) 

Un+m 

U0 

U0 U0 

AF 

WS 

Un 

AF 

WS 

U2 

Un+m+1 

AF 

WS 

Un+1 

U1 

AF 

WS 
U0 

Un+2 



223 
 

where p – the number of inputs in the jth neuron; wj,i– 
the value of weight representing the connection 
between the j th neuron and its input; Ui– the value of 
the i th input of the j th neuron. 

A bipolar sigmoidal activation function has been 
assumed in the form 
 

 
)exp(1

)exp(1
)(

j

j
jj WS

WS
WSfU

λ
λ

−+
−−

== (8) 

 

whereUj – the value of the j th neuron output; λ - the 
nonlinearity coefficient of the activation function 

(assumed λ =1). 
 

6.Description of Experiments 

The proposed parallel differential evolution 
algorithm with multiple trial vectors (PDEA) to 
classify the parity-p problem. There were five islands 
used to realize PDEA. The differential evolution 
algorithm has been adapted for solving and assigned to 
every island in PDEA. Island model used different 
subpopulation with each own island. Each island 
operates its own execution as like in DE algorithm. 
Each island initializes the population at the start of the 
algorithm or replace the subpopulation migrates from 
other neighbor. Mutation, crossover and selection are 
performed on the individual chromosome. If the 
migration interval is not fired, the next iteration begin 
within island, otherwise, a portion of its own 
population and neighbor is selected for migration. If 
the migration occurs, island sends sub-population to 
neighbor island. Neighbor island replaces the sub-
population send by its neighbor and replace with its 
portion of population and algorithm continue. To 
classify the parity-p problem (p ∈ [3; 6]), ANNs having 
structures shown in Fig. 2, were trained using the 
proposed method and other methods for comparison. 
The parity-p problem is described as follows: if p 
presents the number of inputs, and each input can 
accept values “1” or “-1”, then, in the output of the 
network, “1” occurs if and only if the number of “1” in 
the inputs of the ANN is odd. Otherwise “-1” occurs in 
the output of the ANN. 

The example training set was equal to the testing 
set and contained 2p vectors. The following values of 
parameters were assumed: PopSize = 100 and e = 
0.0001. Comparative results obtained using the 
algorithms DE-ANNT+ [15], DE-ANNT [20], EA-

NNT [18], the EBP algorithm [16], [17], and the LM 
algorithm [19], were taken from [15]. 

In the experiments we used identical islands, i.e, 
islands with same parameters. We used a ring topology 
for our experiments. We used five islands because no 
significant change was noticed in the nature of the 
algorithm with a change in the number of islands. The 
policy of migration used was best-random policy in 
which best string from an island replaces any other 
random string of another island based on the ring 
topology. Each island executed the standard DE 
algorithm with the total population size of 20 
individuals per island. The PDEA algorithm presented 
in this paper was stopped when the training error value 
of the ANN was lower than e =0.0001 or when 
operation time exceeded the maximal computation time 
for each parity-p problem. 

In table 1-3, the symbols used are as follows: 
NT-the number of trial vectors; ME-the training 
method chosen: NI-the number of iterations; CC-the 
correct classification (%); FC-the false classification 
(%). The values representing the correct CC and false 
FC classifications were computed as follows: 
 

   %100)
2

( 1
p

M

i iC
CC

∑ ==  (9) 

   

   CCFC −= %100    (10) 
 
where CC—the correct classification (%); M—the 
number of testing vectors (M ∈ [1,2p]); p—the number 
of inputs in the ANN; Ci—the coefficient representing 
the correctness of the classification of the ith training 
vector which is determined as follows: 
 
 

 �� � �1, 	
�� 
��� � � ��� �� � 1      

1, 	
�� 
��� � �� ��� �� � �1

0, ��
��	���                                     

� (11) 

  

where Uout = f(Sout)—the value of the output signal of 
the ANN after the application of the i th testing vector to 

its input; ϕ —the threshold of the training correctness; 
Bi—the value expected for the output of the ANN. 
Artificial neural networks were trained using the 
proposed PDEA method for different values of NT ∈ 

[1; 10] and parameter ϕ =0.99. 
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Table 1.Average Values for Different Values of NT 

and ϕ = 0.99 
 

 Problem Parity – 3 Problem Parity - 4 
NT NI CC (%) NI CC(%) 
1 22.4 98.75 374 76.875 
2 22.8 98.75 233.6 83.125 
3 22.3 98.75 186.6 83.750 
4 22.4 100 162.3 85 
5 29.3 93.75 126.1 85 
6 28.6 97.50 129.4 78.125 
7 20.2 98.75 116.2 80 
8 17.9 98.75 100.9 82.5 
9 17.4 98.75 91.5 81.25 
10 9.0 98.75 82.4 82.4 

 Problem Parity - 5 Problem Parity - 6 
NT NI CC (%) NI CC(%) 
1 461.7 86.5625 1433.6 80.625 
2 203 89.0625 974.8 75.15625 
3 233.1 84.375 772.8 80.9375 
4 178.6 78.4375 631.9 80.9375 
5 169.7 73.125 569.3 75.78125 
6 147.7 82.625 493.7 72.1875 
7 144.5 79.375 442.7 60.15625 
8 123.4 80.3125 401.7 49.53125 
9 110.8 83.125 368 50.15625 
10 103.6 77.1875 336.1 70.15625 

 
In Table 1, the average values of the results were 

taken from [15].  It can be seen from Table 1 that the 
best results (the highest values of CC) are obtained for 
values NT ∈ [1; 4]. Therefore, during the next 
experiment, the value NT equal to 3 was assumed. The 
PDEA algorithm was executed tenfold, and the average 

values of the results obtained for ϕ =0.90 andϕ =0.99 

are presented in Table 2 (ϕ =0.90) and in Table 3 (ϕ
=0.99). The comparative results in both tables are taken 

from [15]. The ϕ  values were chosen experimentally 
according to the author’s previous experience. 
Table 2.Average Values of Results Obtained After 
Tenfold Repetition of PDEA Algorithm (ϕ = 0.90) 

Problem Parity-3 Problem Parity-4 

ME NI CC (%) FC (%) NI CC (%) FC (%) 

PDEA 15 100 0 30 98.685 1.315 

DE+ 27.3 100 0 200.3 88.125 11.875 

DE 24.9 100 0 442.4 87.5 12.5 

EA 56.4 81.25 18.75 154.5 72.5 27.5 

EBP 300 36.25 63.75 800 69.375 30.625 

LM 19 100 0 49.9 97.5 2.5 

Problem Parity-5 Problem Parity-6 

ME NI CC (%) FC (%) NI CC (%) FC (%) 

PDEA 100 97.489 2.511 500 98.9035 1.0965 

DE+ 211.9 91.5625 8.4375 737.9 93.28125 6.71875 

DE 420.3 96.5625 3.4375 2058.4 89.84375 
10.1562

5 

EA 351 67.8125 32.1875 1505.4 78.75 21.25 

EBP 2250 69.6875 30.3125 10800 85.78125 
14.2187

5 

LM 161.7 96.5625 3.4375 1044.2 97.8125 2.1875 

Table 3. Average Values of Results Obtained After 
Tenfold Repetition of PDEA Algorithm (ϕ  = 0.99) 

 
Problem Parity-3 Problem Parity-4 

ME NI CC (%) FC (%) NI CC (%) 
FC 
(%) 

PDEA 20 100 0 31 90.556 9.444 

DE+ 33.7 98.75 1.25 198.4 83.75 16.25 

DE 25.3 96.25 3.75 458.4 81.25 18.75 

EA 55.2 65 35 153.3 60.625 39.375 

EBP 300 6.25 93.75 800 2.5 97.5 

LM 21.7 71.25 28.75 33.9 81.875 18.125 

Problem Parity-5 Problem Parity-6 

ME NI CC (%) FC (%) NI CC (%) 
FC 
(%) 

PDEA 49 91.671 8.329 103 93.474 6.526 

DE+ 234.6 86.875 13.125 773.4 80.9375 
19.062

5 

DE 640.4 86.875 13.125 2025.3 83.59375 
16.406

25 

EA 350.4 60.3125 39.6875 1498.9 65 35 

EBP 2250 17.1875 82.8125 10800 41.09375 
58.906

25 

LM 57.7 84.375 15.625 154.6 85.9375 
14.062

5 

From Tables 2 and 3, it can be seen that, for the 

threshold of training correctness values ϕ =0.90 and ϕ
=0.99, the application of the proposed PDEA method 
caused an increasein the correct classification of data 
as compared to the DE-ANNT+ method. For all cases, 
better results (having a higher percentage of correctly 
classified data) were obtained using the proposed 
method than by using the DE-ANNT+ method. Also, 
results obtained using the PDEA algorithm are better 
than the results obtained by using DE-ANNT, EBP, 
EA, and LM algorithms. 

Also, it can be seen from Tables 2 and 3 that the 
number of iterations (NI) of EBP increases as the 
maximal time increases, but the NI of LM does not. 
This is caused by the fact that, for the EBP method, the 
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ANN training error value was not lower than e=0.0001 
after the maximal time. Therefore, in all cases, the EBP 
method was stopped after the same number of 
iterations, but with the LM algorithm, the computations 
were often stopped before the maximal time was 
reached. 

7. Conclusion  

This paper presents parallel differential 
evolution algorithm with multiple trial vectors (PDEA) 
for artificial neural network training to classify the 
parity-p problem. Based on the results shown in Tables 
2 and 3, it can be seen that training of artificial neural 
networks by using the PDEA algorithm increases the 
efficiency of the data classification in the same period 
when compared with the EA, EBP, DE-ANNT, DE-
ANNT+, or LM algorithms. Therefore, one can say, 
that using proposed PDEA algorithm better trained 
artificial neural network can be obtained at the 
presumed  time, than using EA, EBP, DE-ANNT, DE-
ANNT+, or LM algorithms (more data are correctly 

classified for increasing values of  parameter ϕ ). 
Additionally, an introduction of parallel differential 
evolution algorithm is presented in this paper. Also, it 
is worth saying that the proposed PDEA algorithm can 
be used in many industrial electronics applications in 
which the use of artificial neural network is needed. 
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